Robust internal models with a star-shaped attractor are linear - DYnamique, Observation et Commande des Procédés
Article Dans Une Revue Automatica Année : 2024

Robust internal models with a star-shaped attractor are linear

Résumé

In linear regulation theory, it is well-known that embedding a suitable internal model of the exogenous disturbances and references in the control loop permits to achieve perfect regulation of the desired variables robustly with respect to parametric uncertainties in the plant's equations. However, it was recently proved that this principle does not extend, in general, to nonlinear systems or non-parametric perturbations. In particular, there exist systems for which no smooth finite-dimensional regulator can exist that regulates the desired variables to zero in spite of unstructured uncertainties affecting the plant's dynamics. This article complements such a negative result by proving that, in the canonical context of minimum-phase normal forms, a nonlinear regulator of the Luenberger type that guarantees robust asymptotic regulation with respect to unstructured uncertainties and possesses a star-shaped attractor necessarily behaves as a linear system on such attractor. This result further strengthen the conjecture that robust regulation is essentially a linear property.

Fichier sous embargo
Fichier sous embargo
0 2 25
Année Mois Jours
Avant la publication
samedi 1 février 2025
Fichier sous embargo
samedi 1 février 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04764417 , version 1 (04-11-2024)

Identifiants

Citer

Michelangelo Bin, Daniele Astolfi, Lorenzo Marconi. Robust internal models with a star-shaped attractor are linear. Automatica, 2024, 166, pp.111698. ⟨10.1016/j.automatica.2024.111698⟩. ⟨hal-04764417⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More