ESEO-Tech est le centre de Recherche, Developpement et Innovation de l'ESEO. L'activité de recherche est centrée sur la thématique des systèmes intelligents et communicants, du capteur à la décision.
ESEO-Tech regroupe 4 équipes de recherche : AGE : Automatique et Génie électrique prend appui sur le développement des énergies renouvelables (EnR) dans le paysage de la production d’énergie électrique et travaille au pilotage et à l’optimisation des réseaux électriques intelligents, en partenariat avec l’IREENA – EA 4642, Institut de recherche en Énergie Électrique de Nantes Atlantique. ERIS : L'équipe de Recherche en Informatique et Systèmes s’articule avec un premier axe autour de l'intelligence artificielle pour créer et améliorer des systèmes d'aide à la décision pour les systèmes d'information. Son deuxieme axe s'interesse à l'ingénierie logicielle et en particulier l'ingénierie des modèles en développant des outils de transformation, synchronisation, interprétation ou éxécution de modèles avec un focus particulier sur les systèmes embarqués. L'équipe est partiellement rattachée au LERIA-EA2645 (Laboratoire d’étude et de recherche en informatique de l’Université d’Angers). GSII : Groupe Signal Image et Instrumentation s’intéresse aux domaines du traitement du signal et de l’image et de l’intelligence artificielle pour la mesure, l’instrumentation et le développement de capteurs, sur des applications en géophysique, contrôle non destructif et biomédical, en lien avec le LAUM UMR 6613 –CNRS, le laboratoire d’Acoustique de Le Mans Université. RF-EMC : L'équipe Radio-Fréquences et Compatibilité Électromagnétique travaille à la fois à l’échelle du composant électronique et du système. Elle crée de nouvelles architectures de systèmes et dispositifs de transmission, de récupération/transmission d’énergie électromagnétique et mène des travaux sur la compatibilité électromagnétique : modélisation et caractérisation prédictive des comportements. Ses membres sont associés à l’IETR - Institut d’Electronique et des Technologies du numérique UMR CNRS 6164.
Le laboratoire accueille 35 permanents, dont 27 enseignants-chercheurs, qui élaborent dans leurs domaines respectifs de nouveaux concepts, expérimentent et mènent leurs projets jusqu’à la démonstration en environnement réel. ESEO-Tech accueille également chaque année une trentaine de doctorants et post-doctorants. |
Mots clés
Mapping
Reliability
Optimization
Optimal command
Metamaterial
IDM
GTEM cell
Integrated circuit modeling
Entropy
Accelerométrie
EMC
Action
Field-to-trace coupling
Damage detection
Interaction
Binary sequence
Calibration
Microembolus
Coda Wave Interferometry
Temperature distribution
Equations
Antioxidant activity
Apprentissage par Renforcement
Transcutaneous oximetry
Artefact rejection
Immunity testing
Microstrip
Classification
Prediction
Sleep apnea
Modelling
Vehicle dynamics
Conducting materials
Super-Twisting Sliding Mode Control
Model-checking
Malan
Nonlinearity
Electromagnetic compatibility
Simulation
Immunity
Ischemia
Pathophysiology
Analytical model
Machine learning
Model Driven Engineering
Cable shielding
Autonomous Vehicles
Full-wave simulation
Accelerometer
Near field
Modélisation
Acoustoelasticity
UML
Independent chaotic attractors
Symmetry
Bifurcation
Integrated circuits
Emission
Diagnosis
Integrated circuit
IEC
Concrete
Genetic algorithm
OCL
Pins
Calf pain
Bandits-Manchots Combinatoires
Structural health monitoring
Switching piecewise-constant controller
IC
FDTD
Ultrasound
Active transformation
Dairy cows
Peripheral artery disease
Anti-diabetic properties
Chaos
Radio frequency
Temperature measurement
Claudication
Initial conditions
Susceptibility
Big Data
Field-to-line coupling
Machine Learning
Systèmes embarqués
Anticontrol of chaos
PCB
DPI
Model transformation
MDE
Monitoring
Modeling
Capacitors
Aging
Accelerometry
Thoracic outlet syndrome
Instrument
Malai
Active Front Steering
|
|
Nos dernières publications
-
Jaber Al Rashid, Mohsen Koohestani, Laurent Saintis, Mihaela Barreau. Lifetime reliability modeling on EMC performance of digital ICs influenced by the environmental and aging constraints: A case study. Microelectronics Reliability, 2024, Microelectronics Reliability 159 (2024), 159, pp.115447. ⟨10.1016/j.microrel.2024.115447⟩. ⟨hal-04622696⟩
-
Jaber Al Rashid, Mohsen Koohestani, Laurent Saintis, Mihaela Barreau. Degradation and Reliability Modeling of EM Robustness of Voltage Regulators Based on ADT: An Approach and A Case Study. IEEE Transactions on Device and Materials Reliability, 2024, 24 (1), pp.2-13. ⟨10.1109/TDMR.2023.3340426⟩. ⟨hal-04334074⟩
-
Safae Ouahabi, Nour Elhouda Daoudi, El Hassania Loukili, Hbika Asmae, Mohammed Merzouki, et al.. Investigation into the Phytochemical Composition, Antioxidant Properties, and In-Vitro Anti-Diabetic Efficacy of Ulva lactuca Extracts. Marine drugs, 2024, 22 (6), pp.240. ⟨10.3390/md22060240⟩. ⟨hal-04616809⟩
-
Lokesh Devaraj, Qazi Mashaal Khan, Alastair Ruddle, Alistair Duffy, Richard Perdriau, et al.. Improvements Proposed to Noisy-OR Derivatives for Multi-Causal Analysis: A Case Study of Simultaneous Electromagnetic Disturbances. International Journal of Approximate Reasoning, 2024, 164, pp.109068. ⟨10.1016/j.ijar.2023.109068⟩. ⟨hal-04301458⟩