

What are the critical phenological periods for sustainable perennial grain production in the annual development of intermediate wheatgrass?

Douglas J Cattani, Olivier Duchene, Florian Celette, Christophe David

▶ To cite this version:

Douglas J Cattani, Olivier Duchene, Florian Celette, Christophe David. What are the critical phenological periods for sustainable perennial grain production in the annual development of intermediate wheatgrass?. 2019 ASA-CSSA-SSSA International Annual Meeting, Nov 2019, San Antonio, Texas, United States. hal-03653249

HAL Id: hal-03653249 https://isara.hal.science/hal-03653249

Submitted on 11 Jun2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. What are the critical phenological periods for sustainable perennial grain production in the annual development of intermediate wheatgrass? D.J. Cattani¹, O. Duchene², F. Celette² and C. David². ¹ Department of Plant Science, The University of Manitoba, Winnipeg, MB, Canada, ² Department of Agroecology and Environment, Agrapole-ISARA, Lyon, France.

Acknowledgements: Funding from Manitoba Wheat and Barley Growers Assoc., Growing Forward II, NSERC Strategic, **Canadian Agricultural Partnership**

Introduction: We previously suggested an annual growth cycle begins after harvest of the current year's seed crop and extends through to the next seed harvest, crossing calendar years. Others have shown that environmental conditions from a previous growing season have correlations to the current years seed production potential (2). Species will be different (2,3,4,5) and therefore this will require patience as species individual needs must be determined. Intermediate wheatgrass (Thinopyrum intermedium) is approaching the market in North America. A first study has been published with respect to phenological development (7). Understanding the phenological development will aid in developing effective agronomic practices for sustained grain productivity.

Materials and Methods: The analysis is based upon the results of breeding nurseries and seed production experiments on intermediate wheatgrass grown in either Carman (49°50'N, 98°04'W)(nine site years) or Winnipeg, MB (49°81'N, 97°12'W)(six site years) in order to determine base T of and gdd to initiation of anthesis. Observations regarding initiation of reproductive tiller elongation (RTE), in determining a most likely day length due to an earlier onset of spring (see Table 2 for Manitoba spring dates). Means and standard deviations were used to calculate coefficients of variation for the onset of anthesis.

Results to date: Plant growth and development are impacted by two measures; precipitation may have a greater influence on plant development in an IWG crop. Post-harvest regrowth (Figure 2) is important and is related to gdd and ppt. It appears that while temperature is the primary driver, as long as moisture is adequate, gdd can be adequate to set-up yield potential (reproductive tiller density). In years with short fall regrowth periods, added nutrients can aid in providing yield potential (data not shown (Figure 3). Vernalisation is required (Figure 4). In Manitoba, spring initiation is variable (Table 2), however growth rarely is great prior to early May (days to 100 accumulated gdd base T4°C). Due to a dual induction requirement (6), a specific nightlength needs to be reached for RTE (Figure 5). GDD from the beginning of RTE to first anthesis (Figure 6) appears to be in the 12 to 14 hours of daylight range (Table 3). Observations in France have indicated that RTE is most likely initiated at the 13-hour day-length (Figure 5). Therefore, timing of RTE initiation and gdd accumulation will influence agronomic practices. In Manitoba, the onset of spring (Table 2), limiting response to spring applied nutrients but providing for rapid weed competitiveness.

Growth through anthesis appears to be dependent on gdd accumulation to maturity and the size of seed (Figure 7) will be dependent upon two main factors, number of seeds set inflorescence⁻¹ and climate (gdd and ppt) (Figure 8). The interaction of these factors provides the realization of seed yield at harvest (Figure 8). At this point the growth and development cycle begins anew and harvest timing and ensuing growth conditions determine inflorescence density for the following growing season. As the stand ages, nutrient status appears to increase in importance. Impacts at any stage may influence succeeding stages and therefore grain yield.

Conclusions: Reproductive tiller initiation day-length is most likely 13 hours and gdd base T is possibly 3° or 4°C (for Manitoba). This will be refined as we accumulate more data on adapted germplasm and with additional year-to-year variability. Data from other growth environments will likely provide the conclusive evidence. A gdd x precipitation in the fall regrowth period in Manitoba requires a much greater volume of work to allow for resolution.

Figure 2. Post-harvest stand

Figure 3. Inflorescence density following: 1 = postharvest fertility application; 2 = spring application.

Fable 3.	Selected	growing	degree-d	lay analy	sis from
Carman	<u>a 2012-20</u>	19.			
	<u>ytd51</u>	<u>h125</u>	<u>h135</u>	<u>h145</u>	<u>h155</u>
mean	733.60	729.21	724.35	671.40	525.74
s.d.	34.89	34.91	35.29	38.53	124.12
c.v.	4.76	4.79	4.87	5.74	23.61
	<u>ytd4</u>	<u>h124</u>	<u>h134</u>	<u>h144</u>	<u>h154</u>
mean	810.74	804.59	797.21	736.10	571.13
s.d.	39.54	38.36	37.88	45.95	139.33
c.v.	4.88	4.77	4.75	6.24	24.40
	<u>ytd3</u>	<u>h123</u>	<u>h133</u>	<u>h143</u>	<u>h153</u>
mean	890.79	882.68	872.18	797.35	616.80
s.d.	45.55	42.72	41.25	55.61	154.85
c.v.	5.11	4.84	4.73	6.97	25.11
	<u>ytd0</u>	<u>h120</u>	<u>h130</u>	<u>h140</u>	<u>h150</u>
mean	1152.02	1130.55	1105.76	992.24	754.30
s.d.	78.09	67.89	61.56	89.10	201.87
c.v.	6.78	6.00	5.57	8.98	26.76

	1000	A. Carl	C. C. C. C.	Service Service	Image	e D.Cattani	
Figure 4: Pre-elongation of reproductive apical meristems.							
Table 1 Fall and and and shows of the barrent of							
Table 1. Fall god and ppt and impact on harvest at							
Carman and Winnipeg, MB.							
			<u>Carm</u>	<u>an</u>			
		<u>ppt (mm)</u>				kg ha ⁻¹	
year	<u>date</u>	<u>gdd</u>	<u>fall</u>	<u>harvest</u>	<u>harvest</u>	<u>yield</u>	
2016-17	Nov 16	681	127	361	Aug 08	950	
2017-18	Oct 25	709	115	357	July 31	842	
Winnipeg							
2016-17	Nov 16	724	128	351	Aug 07	866	
2017-18	Oct 25	715	85	242	Aug 01	387	

 Table 2. Beginning growing degree days (base
4°C) at Carman since 2011.

<u>Year</u> 2011	First day <u>(base 4°C)</u> March 14, 2011	Next day of gdd <u>accumulation</u> April 10, 2011	<u>Date of 100 gdo</u> May 07
2012	March 12, 2012	March 14, 2012	April 15
2013	April 26, 2013	April 27, 2013	May 17
2014	April 09, 2014	April 10, 2014	May 23

¹ ytd5 - year to date - 5°C based temperature, h12 - 12hour day-length accumulation, s.d. standard deviation of the mean, c.v. coefficient of variation.

Figure 6. Flowering and pollination in intermediate wheatgrass.

March 10, 2015 March 14, 2015 2015 **Apr 01** Feb. 23, 2016 March 06, 2016 **May 04** 2016 March 29, 2017 March 30, 2017 **May 04** 2017 April 20, 2018 **May 07** 2018 **April 19, 2018** April 7, 2019 April 15, 2019 May 12 2019

Contact information: Douglas J. Cattani, University of Manitoba, Winnipeg, MB., Canada, R3T 2N2. E-mail: Doug.Cattani@umanitoba.ca

Literature cited:

1. Cattani and Asselin, 2018, CJPS 98: 235-246. 2. Khanal, 2017, CPS-CSA meeting, personal communication. 3. Jonsdottir (1992) J. of Veg. Sci. 2:89-94. 4. Thompson and Clark 1991, CJPS 73:569-575. 5. Cattani et al., 2004. CJPS 84:117-124. 6. Heide (1994) New Phytol. 128:347-362. 7. Jungers et al. 2018, Annals Appl. Biol. 172:346-354.