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a b s t r a c t 

The aim of this study was to evaluate the capacity of an electronic nose, the NeOse Pro, to assess the alteration of 
two food matrixes of animal origin, beef and salmon. For each matrix, two types of samples were analyzed, natural 
samples and simplified “diluted ” samples based on meat juice and agar. Samples were inoculated with specific 
spoilage organisms and stored for 6 days at 8°C under different conditions: air, modified atmosphere packaging, 
and vacuum packaging. A non-inoculated control sample was stored at -80°C under vacuum packaging. Results 
of the NeOse Pro were compared with gas chromatography coupled to mass spectrophotometry analysis. For this 
purpose, heatmaps, principal component analysis and discriminant analysis were used. GC-MS results show that 
the major detected volatile organic compounds for beef stored under air are dimethyl disulfide and ethyl acetate. 
For salmon stored under air, it was mainly dimethyl disulfide, methyl thioacetate, acetoin and ethyl acetate that 
were produced. For beef and salmon NeOse Pro and GC-MS results are consistent; samples stored under air are 
separated from other samples. 

1

 

b  

m  

n  

E  

1  

m  

(  

t  

t  

f  

a  

t
 

c  

m  

(  

F  

p  

u  

c  

f
 

m  

i  

t  

s  

2
 

n  

c  

A  

f  

n  

i

h
R
2
(

. Introduction 

Although the consumption of vegetable proteins is increasing year
y year, meat and fish are still an important source of proteins for hu-
ans. Over the last ten years, the FAO (Food and Agriculture Orga-
ization) observed that meat consumption for OECD (Organization for
conomic Co-operation and Development) countries has increased by
3.9%, reaching 121,828 tons per year, whereas fish consumption re-
ained stable for the same period at a high level of 39,253 tons per year

 OCDE/FAO 2021 ). The main issue for consumers is having access to au-
hentic and safe products. Quality control is a global public health issue
hat contributes to improving food sustainability and avoiding waste and
oodborne illnesses. The main cause of spoilage in food is the prolifer-
tion of some of the microorganisms that cause changes in appearance,
exture, odor and flavor in the product. 

Numerous techniques exist for food quality assessment, including mi-
robiological, sensory and physico-chemical analyses, and the develop-
ent of new methods is the subject of many reviews, especially for meat

 Fletcher et al., 2018 ) and fish ( Wu et al., 2019 ; Prabhakar et al., 2020 ).
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ood deterioration is characterized by the modification of organoleptic
roperties like the development of an unpleasant smell. This odor can be
sed to evaluate food freshness on the basis of several volatile organic
ompounds (VOCs) produced by spoilage bacteria. These VOCs are re-
erred to chemical spoilage indicators (CSIs) ( Gram and Huss, 1996 ). 

The predominant method to study the food volatilome is gas chro-
atography coupled to mass spectrophotometry (GC-MS). Many stud-

es using GC-MS have been conducted to quantify VOCs and to iden-
ify the CSIs in beef and salmon samples stored under several atmo-
pheres ( Leduc et al., 2012 ; Mik š -Krajnik et al., 2016 ; Mansur et al.,
019 ; Kuuliala et al., 2019 ). 

GC-MS is a reliable method of identifying and quantifying compo-
ents. However, it requires expensive equipment and advanced techni-
al requirements, and is time-consuming as well ( Conti et al., 2020 ).
nother option is the electronic nose (e-nose), a compact and user-

riendly device that delivers a fast response. Moreover, e-noses use a
on-destructive method and make it possible to monitor processes, mak-
ng it particularly well adapted to the food-processing sector. 
h, F-78850 Thiverval Grignon, France 
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E-noses are inspired by the human olfactory system. They consist
f an array of gas sensors, with non-specific responses, and an appro-
riate pattern recognition system using the multivariate data analysis
 Górska-Horczyczak et al., 2016 ; Wu et al., 2019 ; Franceschelli et al.,
021 ). Recent reviews reporting different applications of e-noses have
hown promising results for their use to evaluate meat and fish fresh-
ess ( Wojnowski et al., 2017 ; Jia et al., 2018 ; Zaukuu et al., 2020 ).
or example, the Food Sniffer electronic nose (FS) used by Ramirez
t al. (2018) classifies pork meat into three categories (fresh, well
ooked, spoiled) depending on storage time at 4°C. However, the
poilage assessed by sensory analysis occurred earlier than that in-
icated by the FS. Using a portable and MOS sensor-based e-nose
ystem implemented with a classification algorithm (K-NN), Grassi,
enedetti, Opizzio, di Nardo, & Buratti ( 2019 ) were able to cor-
ectly classify meat and fish samples into three freshness classes de-
ned as green-unspoiled, yellow-acceptable and red-spoiled. Based on
he same classification and using a semiconductor gas sensor array,
hen et al. (2019) distinguished pork, beef and mutton samples with
ifferent storage times, in agreement with the results of the sensory
valuation. Aggregated measurements by electronic nose, computer vi-
ion and artificial tactile sensory technologies can distinguish meat sam-
les (pork and chicken) with different freshness levels and storage times
 Weng et al., 2020 ). 

An e-nose that uses odorant binding proteins (OBPs) as sensing ele-
ents with a surface plasmon resonance imaging (SPRi) detection sys-

em has proven to be efficient for the detection of VOCs with high sen-
itivity and good repeatability ( Hurot et al., 2019 ). With SPRi detection
sed by NeOse Pro (Aryballe), the difference of aromatic evolution of
ilks fermented by different lactic acid bacteria ratios has been high-

ighted ( Demarigny et al., 2021 ). 
This study seeks to go further by investigating whether NeOse Pro

an detect volatile composition differences in beef or salmon stored un-
er various conditions (air, modified atmosphere, vacuum) and inocu-
ated with a spoilage microbiota. GC-MS is used as a reference method
nd to identify spoilage indicators. Data are analyzed using heatmaps,
rincipal component analysis (PCA) and linear discriminant analysis
LDA). 

. Material and methods 

.1. Food matrix 

Beef carpaccio and salmon fillet from local retailers were used to
repare natural matrix (N) and simplified matrix (S) based on diluted
1/5 times) meat juice solidified in agar. The interest of S is to have a
ore stable and easier to use matrix with the same characteristics as the
atural one for the studies of spoilage microorganisms. N was made of
aw slices of carpaccio or salmon fillet. S was made of 200 g of carpaccio
r salmon fillet mixed in 1 L of water to obtain a juice. 12.5 mL of this
eef or salmon juice were filter sterilized (0.2 μm) and were poured into
etri dishes with the same volume of a 3% agar solution to constitute a
5 g disc of simplified beef or salmon. 

Both of these N and S were inoculated at 10 3 cfu.g − 1 with a set of
5 specific spoilage organisms (SSOs) identified on meat and seafood
roducts ( Chaillou et al., 2015 ), including lactic acid bacteria, Enter-
bacteria and Pseudomonas. 2 slices of raw carpaccio for N and 2 discs
f agar for S were put into bags with three storage conditions: vacuum
ackaging (VP), modified atmosphere 50% CO 2 / 50% N 2 (MAP), or air
A). Following incubation at 8°C for 6 days, 3 g of beef or salmon (N,
) were weighted and placed in 20 mL GC vials. At that time, samples
ere frozen at -80°C waiting for analysis. Non-inoculated controls sam-
les (C) were prepared with beef or salmon and stored under vacuum
tmosphere at -80°C. Samples were prepared in biological triplicates for
ach of the four storage conditions. Thus, 24 beef samples (12 N, 12 S)
nd 24 salmon samples (12 N, 12 S) were generated. 
2 
.2. NeOse Pro analysis 

The NeOse Pro (Aryballe, Grenoble, France) was used to evalu-
te flavor profiles of beef and salmon stored under different condi-
ions. The optoelectronic nose measurement principle is based on SPRi
 Brenet et al., 2018 ; Maho et al., 2020 ). Sensing materials of the NeOse
ro are short peptides fixed on a prism with a gold surface. Peptide se-
uences are selected for their capacity to interact with a wide range of
olatile organic compounds (VOCs) rather than to their capacity to tar-
et specific ones. Therefore, each peptide will bind with VOCs present
n the gas sample depending on their relative affinity. The stronger
he binding reaction between a peptide and a VOC is, the greater the
hange of reflectivity caught by a camera from the optical system will be
 Brenet et al., 2018 ). A pump (60 mL/min) brings the sample headspace
o the sensitive material. NeOse Pro is coupled to an automatic gas sam-
ling system (Aryballe, Grenoble, France) with 8 measurement lines.
he first line, reserved to ambient air, is used to measure the baseline.
ther lines are connected to 6 samples and one tracer (water in our
ase) for the drift correction. For each sample, the device measures the
aseline for 20 s, then the sample headspace for 20 s. Next, ambient
ir is pumped while the signal return to baseline. The software (NeOse
pp, Aryballe, Grenoble, France) records via SPRi the kinetic responses
f the 59 sensors which can be read on a sensorgram, and a response
alled signature, which is the difference between the baseline’s average
ignal and the sample’s average signal for each of the 59 sensors. This
ignature is representative of the affinity of analytes presents in the sam-
le headspace and peptides coated on the prism surface. Each sample is
nalyzed 3 times. 

The day before measurements, samples were placed at 4°C for the
ight. Two hours before analysis, they were heated up to 30°C. This
emperature was maintained during all the measurements. Neose Pro
xperiments were conducted on 2 different days with 2 sets of the same
amples. Since peptides as chemical sensors are likely to drift over time,
 drift compensation was used as described in Maho et al. (2020) . 

.3. GC-MS analysis 

The most used method to evaluate the capacity to detect spoiled food
s GC-MS. 

In this study, the VOCs of samples were analyzed with a DHS system
ith a Gerstel MPS autosampler (Mülheim an der Ruhr, Denmark) and a
C-MS (7890B GC Agilent, Santa Clara, United States). Before analysis

amples stored at -80°C were placed at 4°C for 16 hours. Then, they were
laced in the Gerstel MPS autosampler support by the DHS system at
0°C and analyzed randomly. To generate the headspace, samples were
eated at 40°C and stirred during 3 min. The headspace was purged with
 flow of helium (15 min at 30 mL/min). VOCs were collected on the
orbent material (Tenax TA 2,6-diphenylene oxide polymer, Gerstel) at
0°C and dried by a helium flow (14 min at 50 mL/min). Desorption and
ryofocusing of compounds were performed with a Thermal Desorption
nit connected to a Cooling Injection System (TDU-CIS Gerstel) in a sol-
ent venting mode. Samples were heated in the TDU unit from 30°C to
70°C (60°C/min) and kept at 270°C for 7 minutes, then cryofocused in
he CIS at -100°C, desorbed at 270°C (12°C/s) and held at temperature
or 5 min. Then, VOCs were carried by a helium flow (1,6 mL/min) to an
B5MS capillary column (60 m x 0.32 mm x 1 μm, PEG, Agilent) in the
as chromatograph unit. The oven temperature was 10°C / 5 min, heat-
ng at 4°C/min until 130°C, heating at 20°C/min to 250°C and maintain-
ng 250°C for 5 minutes. Analytes were then ionized in the quadrupole
ass spectrometer (5977B Agilent, Santa Clara, United States) in the

lectron-impact mode (70 eV). Compounds were identified by matching
heir mass spectra with mass spectral library NIST 17 using a similarity
ndex > 85%. To improve the results, the identification was confirmed
ith pure standard molecules (Sigma-Aldrich, Saint-Quentin-Fallavier,
rance). 
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Fig. 1. NeOse Pro Sensorgrams obtained 59 sensors from the headspace analysis of beef (a) and salmon (b) C samples stored for 6 days under a vacuum atmosphere 
at -80°C as a function of time. Sensorgrams after exposure to air (0s – 20s) and to headspace of samples (20s – 40s). 
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.4. Statistical analysis 

Sample measurements were randomized in NeOse Pro and GC-MS.
ata analysis was performed using heatmaps, principal component anal-
sis (PCA) and linear discriminant analysis (LDA) with the statistical
oftware programs XLSTAT (Addinsoft, Paris, France, 2009). For the
eatmaps, an interquartile range of 0.25 was applied to remove the vari-
bles with a low variability and improve the readability. In the case of
DA methods the objects from the training set were classified using the
ross-validation method with a forward variable selection. An evalua-
ion of correctness of classification was performed using so-called con-
usion matrix. 

. Results and discussion 

.1. Application of NeOse Pro to evaluate flavor profiles of beef and 

almon stored under different atmospheres 

.1.1. Sensor responses 

Sensorgrams on Fig. 1 show typical kinetic responses of the 59 NeOse
ro sensors during the measurement of beef and salmon C samples after
 days of storage under vacuum atmosphere at -80°C. As described by
renet et al. (2018) and Maho et al. (2020) , all the sensorgrams have the
ame characteristic shapes. The extremely low signals recorded during
he first 20 s, are the response of the sensors under airflow and represent
he baseline. When the headspace of the sample is transferred to the
ensors (after 20 s), the signals quickly increase to a maximum value.
hen, they remain stable at different levels during the analysis of the
amples. They decrease to the baseline when the sensors are flushed
ith ambient air (data not shown). The steady state values depend on
ifferent binding reactions between peptides and VOCs. 

Regardless of the product analyzed the normalized signatures ob-
ained after the headspace analysis of N, S beef and salmon samples
tored under different atmospheres, appear to be similar with the same
hape (data not shown). However, for several sensors, the signature lev-
ls for the analysis of samples stored under air are higher than for sam-
les stored under other conditions. 

.1.2. Multivariate analysis of Neose Pro data 

A PCA was performed with the signatures of the 59 sensors for beef
 Fig. 2 a) and salmon ( Fig. 2 b) samples. The first two axes of the PCA
ccount for 92% of the total variance for beef and 85% for salmon. In
oth PCAs, N (natural matrix) and S (simplified matrix) were not dis-
riminated. The similar location of N and S samples on the PCA indicates
hat S is representative of N. 

The beef and salmon PCAs are alike for sample location. Inoculated
amples of beef and salmon stored under A were clearly discriminated
rom all the others on PC1, which explains about 80% and 56% of the
3 
otal variance, respectively. Non-inoculated C samples and inoculated
amples stored under VP (N and S) or MAP (N and S) overlapped. Axes
 and 4 of beef and salmon PCAs provide no better discrimination of the
amples (data not shown). 

Tables 1 and 2 present the variables the most strongly correlated with
he axis of the PCA for beef and salmon samples. Variables are identified
y numbers from 0 to 58 for each peptide that is on the golden coat of
he prism. Several sensors, 3, 4, 5, 17, 25, 43 and 44, corresponding to
he variables that are the most highly correlated with the positive side
f PC1, are common to beef and salmon samples. Thus, these peptides
hat are highly and positively correlated with the first axis of the PCA
re sensitive to VOCs produced for samples stored under A. Peptide 39
s common to beef and salmon but negatively correlated with PC1. This
eptide is sensitive to VOCs produced for samples stored under protec-
ive atmospheres. 

For the PC2, sensors 2, 16, 30 and 33 are highlighted for salmon
amples and none for beef. However, no discrimination depending on
he storage conditions for either beef or salmon samples is observed on
he PC2 of the PCAs. 

PCA results revealed the ability of NeOse Pro to detect the difference
mong beef and salmon samples stored under various atmospheres. In
ddition, cross-validated LDA was used to further assess NeOse Pro per-
ormances. The results are shown in the confusion matrix that described
he number of correct and incorrect classifications for beef ( Table 3 ) and
almon ( Table 4 ). These tables showed that 59% of all beef samples and
2% of all salmon samples are correctly classified any storage require-
ents. More precisely, samples of beef and salmon stored under A were
ell-classified at 100% and 94% respectively. For the other classes, C,
P and MAP, the rate of well-classified samples is much lower: between
8% and 60% for beef and 44% and 72% for salmon. C, VP and MAP
amples are mixed together but none of these samples were classified
ith those stored under A. 

For both matrixes, beef and salmon, PCAs for different storage condi-
ions showed that NeOse Pro clearly differentiates samples stored under
ir from samples packaged in a protective atmosphere. It does not al-
ow the discrimination between non-inoculated controls and inoculated
amples stored in VP and in MAP. This was confirmed by cross-validated
DA. These results show that the VOCs generated could be different
epending on whether they were stored under air or protective atmo-
pheres. 

.2. Application of GC-MS to evaluate flavor profiles of beef and salmon 

tored under different atmospheres 

.2.1. Headspace analysis of the samples 

All storage conditions combined, the GC-MS detected a total amount
f 52 and 84 compounds in beef and salmon samples, respectively.
mounts of VOCs released varied with the storage conditions and were
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Fig. 2. Principal component analysis (PCA) score plot in dimension 1-2 for different storage conditions of beef (a) and salmon (b) samples measured by NeOse Pro. 
N (natural matrix); S (simplified matrix); C (control); A (air); MAP (modified atmosphere); VP (vacuum packaging). 

Table 1 

Principal component 1, 2 analysis to highlight the contribution of variables (numbered sensors) in beef sample 
differentiation with NeOse Pro. Variables selected with a loading factor > 0.90 and < -0.90. 

Principal component Variance explained (%) Total variance (%) Most highly correlated variables Loadings 

PC1 79.9 79.9 4 0.993 
5 0.993 
44 0.991 
17 0.991 
25 0.989 
42 0.985 
19 0.983 
3 0.981 
43 0.977 
22 -0.984 
39 -0.960 
53 -0.955 
52 -0.953 

PC2 12.1 92.0 - - 

Table 2 

Principal component 1, 2 analysis to highlight the contribution of variables (numbered sensors) in salmon sample 
differentiation with NeOse Pro. Variables selected with a loading factor > 0.90 and < -0.90. 

Principal component Variance explained (%) Total variance (%) Most highly correlated variables Loadings 

PC1 56.1 56.1 43 0.991 
3 0.982 
44 0.980 
25 0.979 
17 0.979 
4 0.949 
5 0.937 
39 -0.920 
21 -0.928 

PC2 29.0 85.1 16 0.971 
2 0.940 
30 -0.957 
33 -0.912 
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ainly distributed into five classes: alcohols, aldehydes, ketones, esters
nd sulfur compounds commonly identified in meat and fish during stor-
ge ( Casaburi et al., 2015 ; Leduc et al., 2012 ). Fig. 3 presents the distri-
ution of the five class of VOCs detected by GC-MS in beef and salmon
amples depending on the storage condition. 

For beef ( Fig. 3. a), C samples have the lowest amount of VOCs re-
ardless of the class. Storage under A was the condition under which
4 
he greatest amount of VOCs that can be considered as CSIs was accu-
ulated, especially esters and sulfur compounds. Sulfur compounds are

ssociated with unpleasant odors and can be considered as an index of
poilage ( Stutz et al., 1991 ). Ketones were produced in greater amounts
n VP and MAP. 

For salmon ( Fig. 3 b), VOCs in C samples are either very low when
ompared to other conditions or absent. Like beef, samples packaged
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Fig. 3. Distribution of different class of VOCs (alcohols, aldehydes, ketones, esters, sulfur compounds) detected by GC-MS in beef (a) and salmon samples (b) stored 
under different conditions. C (control); A (air); MAP (modified atmosphere); VP (vacuum packaging). 

Table 3 

Confusion matrix from cross validation for 4 classes correspond- 
ing to different storage conditions of beef with NeOse Pro mea- 
surements. C (control); A (air); MAP (modified atmosphere); VP 
(vacuum packaging). 

Predicted class 
Actual class Class size C A MAP VP % correct 

C 36 18 0 2 16 50% 

A 36 0 36 0 0 100% 

MAP 35 4 0 21 10 60% 

VP 36 13 0 13 10 28% 

Total 143 35 36 36 36 59% 

Table 4 

Confusion matrix from cross validation for 4 classes correspond- 
ing to different storage conditions of salmon with NeOse Pro mea- 
surements. C (control); A (air); MAP (modified atmosphere); VP 
(vacuum packaging). 

Predicted class 
Actual class Class size C A MAP VP % correct 

C 36 26 0 5 5 72% 

A 36 1 34 1 0 94% 

MAP 36 12 0 13 11 36% 

VP 36 11 0 9 16 44% 

Total 144 50 34 28 32 62% 
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nder A accumulated the highest levels of VOCs known as CSIs, with
lcohols, esters and sulfur compounds. Aldehydes are present in higher
mount in VP and MAP samples. 

.2.2. Multivariate analysis of GC-MS data 

.2.2.1. Heatmaps analysis of beef and salmon volatile compounds.

eatmaps were generated for a rapid assessment of the variations in the
ontents of principal VOCs in beef ( Fig. 4 a) and salmon ( Fig. 4 b) samples
nder different storage conditions. A green square indicates that VOC
evels were higher than their mean levels, while a red box indicates that
OC levels were lower than their mean levels. 

The heatmap ( Fig. 4 a) classified 12 most representative VOCs and
eef samples using a hierarchical cluster analysis (HCA). Two clusters
ere clearly defined. The first one is composed of N A and S A sam-
les and is characterized by a higher amount of ethyl acetate, dimethyl
isulfide, methyl thioacetate, 2-pentanone and 2-heptanone known as
SIs ( Casaburi et al., 2015 ; Ercolini et al., 2011 ). Samples stored under
 protective atmosphere {N C; S C; N MAP; S MAP; N VP; S VP} formed
he second cluster. This class is defined by higher amount of 1-pentanol.
5 
n this cluster, N C and S C were differentiated from other samples MAP
nd VP thanks to 3 VOCs present in higher amount: 1-pentanol, 1-octen-
-ol and acetic acid 2-phenylethyl ester. This heatmap also highlighted
he high amount of acetoin in all samples. 

The heatmap ( Fig. 4 b) classified 14 most representative VOCs and
almon samples thanks to a HCA. This heatmap distinguishes two clus-
ers of samples. The first one {N C; S C; N MAP} is characterized by a
igh content of isopropyl alcohol and acetic acid 2-phenylethyl ester.
his group can be divided in two sub-groups: {N C; S C} where these
wo molecules are higher than the other sub-group {N MAP}. The second
roup {S MAP; S VP; N VP; S A; N A} is mainly defined by 3-methyl-
-butanol. It can be divided in 3 sub-groups: {S MAP; S VP}, {N VP}
nd {S A; N A}. The sub-group {S MAP; S VP} displays high amount
f 2-methyl-1-butanol, 3-methylbutanal and 2-methylbutanal. The sub-
roup {S A; N A} present the highest content of dimethyl disulfide and
thyl acetate which are well known CSIs ( Leduc et al., 2012 ) and methyl
hioacetate. 

.2.2.2. PCA and LDA analysis of beef and salmon volatile compounds.

CA was applied to the volatile compounds to analyze differences
mong the samples of beef or salmon from different storage conditions.
ig. 5 a shows the PCA plot for the beef samples. The first two princi-
al components explained about 77% of the variance. N and S samples
tored under protective atmosphere (C, VP, MAP), except one N VP,
ere located on the positive side of the PC1 axis, which accounts for
6.5% of the variance and overlapped. N A and S A samples were dis-
ersed on the negative side of PC1. The fragmented distribution of the
ir samples could be related to a wide diversity of VOCs. 

The loading factors described in Table 5 for beef samples analysis
ake it easier to identify VOCs that contribute to the discrimination

f samples. The most highly correlated VOCs are acetoin (0.979) and
imethyl disulfide (-0.837) on PC1, and ethyl acetate (0.782) on PC2.
imethyl disulfide and acetoin contribute to the differentiation of A

amples from C, VP and MAP samples. Dimethyl disulfide is one of the
ost common sulfur compounds found in spoiled meat during storage

n air ( Casaburi et al., 2015 ). In non-inoculated samples (C), acetoin was
resent, like in VP and MAP samples, but in greater quantity. It is the
ost commonly found ketone in meat, regardless of storage conditions.
thyl acetate is not found in C samples and is present in other samples,
ith greater amounts in A. It is one of the major esters found in spoiled
eat ( Casaburi et al., 2015 ; Ercolini et al., 2011 ). 

ACP results for salmon samples are shown in Fig. 5 b. PC1 and PC2
ccounted for 26.5% and 25.2% of the variance respectively (51.7% of
he total variance). C samples from both N and S overlapped and formed
 cluster with samples from N stored in MAP, on the negative side of the
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Fig. 4. Heatmaps displaying the results of hierarchical cluster analyses (HCA) conducted on both VOCs and storage conditions for beef (a) and salmon (b). Importance 
of VOCs varies from > 1 (highest values in green) to < -1 (lowest values in red). VOCs with an interquartile range lowest than 0.25 were removed. N (natural matrix); 
S (simplified matrix); C (control); A (air); MAP (modified atmosphere); VP (vacuum packaging). 

Fig. 5. Principal component analysis (PCA) score plot in dimension 1-2 for different storage conditions of beef (a) and salmon (b) samples measured by GC-MS. N 

(natural matrix); S (simplified matrix); C (control); A (air); MAP (modified atmosphere); VP (vacuum packaging). 

Table 5 

Principal component 1 and 2 analysis to highlight the contribution of variables (volatile compounds) in beef 
sample differentiation with GC-MS. Variables selected with a loading factor > 0.70 and < -0.70. 

Principal component Variance explained (%) Total variance (%) Most highly correlated variables Loadings 

PC1 56.5 56.5 Acetoin 0.979 
Dimethyl disulfide -0.837 

PC2 20.1 76.6 Ethyl acetate 0.782 
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d
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2  

a  

a  

a  
C1 axis. S VP and S MAP samples and one S A sample formed another
istinct cluster on the positive side of PC1. N VP samples were also dif-
erentiated from the others. N A and S A samples were differentiated
rom other samples on the PC2 axis. Since the first two axes PC1 and
C2 represent only 51.7% of the total variance, it is considered that the
ollowing axes increase the total explained variance. To reach 81.3% of
he total variance, PC3 and PC4 must be considered, with 15.3% and
4.3% of the variance respectively ( Table 6 ). Unfortunately, PC3 and
6 
C4 did not improve the distinction between the different storage con-
itions (data not shown). 

The most highly correlated VOCs on PC1 are 3-methyl-1-butanol
0.934), 2-methyl-1-butanol (0.788), phenylethyl alcohol (0.755) and
-methylbutanal (0.704) ( Table 6 ). On PC2, methyl thioacetate (0.803)
nd dimethyl disulfide (0.787) are the most strongly correlated. On PC3
nd PC4, the most highly correlated VOCs are acetoin (0.850) and ethyl
cetate (0.805), respectively. Most of these compounds show an increase
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Table 6 

Principal component 1, 2, 3 and 4 analysis to highlight the contribution of variables (volatile compounds) in 
salmon sample differentiation with GC-MS. Variables selected with a loading factor > 0.70 and < -0.70. 

Principal component Variance explained (%) Total variance (%) Most highly correlated variables Loadings 

PC1 26.5 26.5 3-methyl-1-butanol 0.934 
2-methyl-1-butanol 0.788 
Phenylethyl alcohol 0.755 
2-methylbutanal 0.704 

PC2 25.2 51.7 Methyl thioacetate 0.803 
Dimethyl disulfide 0.787 

PC3 15.3 67.0 Acetoin 0.850 
PC4 14.3 81.3 Ethyl Acetate 0.805 

Table 7 

Confusion matrix from cross validation for 4 classes correspond- 
ing to different storage conditions of beef with GC-MS mea- 
surements. C (control); A (air); MAP (modified atmosphere); VP 
(vacuum packaging). 

Predicted class 
Actual class Class size C A MAP VP % correct 

C 6 5 0 1 0 83% 

A 6 0 6 0 0 100% 

MAP 6 0 0 6 0 100% 

VP 6 0 1 2 3 50% 

Total 24 5 7 9 3 83% 

Table 8 

Confusion matrix from cross validation for 4 classes correspond- 
ing to different storage conditions of salmon with GC-MS mea- 
surements. C (control); A (air); MAP (modified atmosphere); VP 
(vacuum packaging). 

Predicted class 
Actual class Class size C A MAP VP % correct 

C 6 5 0 1 0 83% 

A 6 0 6 0 0 100% 

MAP 6 0 0 5 1 83% 

VP 6 0 0 1 5 83% 

Total 24 5 6 7 6 88% 
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uring storage, and some studies suggest that certain ones are spoilage
arkers for fish. This is the case of 3-methyl-1-butanol for ice-stored
sh in VP and under A ( Leduc et al., 2012 ; Soncin et al., 2009 ) and raw
tlantic salmon stored under A ( Mik š -Krajnik et al., 2016 ), 2-methyl-
-butanol in VP ( Jørgensen et al., 2001 ; Jónsdóttir et al., 2008 ) and
-methylbutanal for ice-stored fish in VP or under A ( Leduc et al., 2012 ;
oncin et al., 2009 ). In our study, these three compounds contributed to
he differentiation on PC1 of S VP, S MAP samples and 1 S A sample from
he other ones. Dimethyl disulfide made it possible to distinguish A sam-
les from C samples on PC2 in this study. It is also considered as a CSI
or ice-stored fish in VP and under A ( Leduc et al., 2012 ; Alasalvar et al.,
005 ). On PC2, methyl thioacetate a molecule with an unpleasant odor
ontributes to the differentiation of A samples as well. 

GC-MS showed differences between storage conditions both for beef
nd salmon. The most important distinction appeared between sam-
les stored under air and non-inoculated samples (C). Among the de-
ected VOCs that differentiate samples stored under A from the others,
imethyl disulfide is common for both beef and salmon samples. 

The matrix confusion for the cross-validated LDA of beef samples
 Table 7 ) and salmon samples ( Table 8 ) showed that classifications
ere correct with an 83% and 88% rate respectively. All of the beef
nd salmon samples stored under A were well classified, as were beef
amples in MAP. For the other classes, the rate of correct classification
eached 83% except for beef samples stored in VP (50%). These results
onfirmed the PCA analysis and the specificity of samples stored under
. 
7 
. Conclusions 

We have demonstrated that NeOse Pro is a new analytical tool that
s particularly interesting for the assessment of food matrices spoiled by
icroorganisms. NeOse Pro allowed the differentiation of salmon and

eef samples stored under air from those stored under protective at-
ospheres. Several peptides are responsible for this differentiation. In

greement with NeOse Pro results, GC-MS showed the same differentia-
ion and detected greater amounts of VOCs in samples stored under air,
uch as dimethyl disulfide, which can be found in both beef and salmon
amples. The signature supplied by NeOse Pro is sufficient to identify
poiled food. It facilitates food quality assessment by being an easily
ransported device that provides a rapid answer. Based on these find-
ngs, future developments will focus on the optimization of the NeOse
ro sensor array by designing and incorporating alternative sequences of
he identified peptides of interest and by removing the non-informative
nes. 
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