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Abstract 

The intensification of agriculture has led to environmental degradation, including the loss of 

biodiversity. This has prompted interest in perennial grain cropping systems to address and mitigate 

some of these negative impacts. In order to determine if perennial grain cultivation promotes a higher 

microbial diversity, we assessed the endophytic microbiota of a perennial grain crop (intermediate 

wheatgrass, Thinopyrum intermedium L.) in comparison to its annual counterpart, wheat (Triticum 

aestivum L.). The study covered three sampling sites in a pan-European gradient (Sweden, Belgium, 

France), two plant genotypes, three plant compartments (roots, stems, and leaves) and two sampling 

timepoints. We observed that the host genotype effect was mainly evident in the belowground 

compartment, and only to a lesser extent in the aboveground tissues, with a similar pattern at all three 

sampling sites. Moreover, intermediate wheatgrass roots harboured a different bacterial community 

composition and higher diversity and richness compared to their annual counterparts. The root 

bacterial diversity was influenced by several soil chemical parameters, such as the carbon:nitrogen 

ratio, but also soil microbial parameters, such as soil respiration and dehydrogenase activity. 

Consistent findings across time and space suggest stable mechanisms in microbiota assembly 

associated with perennial grain cropping, underscoring their potential role in supporting biodiversity 

within sustainable agricultural systems.  

Keywords: Perennial grain, plant microbiome, rhizosphere, root endophytes, amplicon sequencing 
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Introduction 

The ongoing intensification of agricultural practices has resulted in environmental changes and 

challenges, including the degradation of soil fertility and depletion of biodiversity (1, 2). One proposed 

solution to address these negative consequences is the implementation of perennial grain cropping 

systems with deep-rooted plants, which is inspired by natural ecosystems (3). One of the most 

promising varieties of perennial grain crops is intermediate wheatgrass [Thinopyrum intermedium 

(Host) Barkworth & D.R. Dewey; trademarked as Kernza®] (4). Perennial grain cropping offers a more 

sustainable approach for plant production and could help to reduce negative impacts of agriculture, 

as plants remain in the same field for multiple years and thereby provide a permanent soil cover (5). 

However, further research is required to determine if perennial plants can retain specific ecosystem 

services under agricultural settings, such as maintenance of enhanced biodiversity (6). 

Intermediate wheatgrass offers various ecosystem services, particularly connected to soil health (7). 

Soil microorganisms are key for governing soil health and are one of the main sources from which 

plants select their endophytic microbiome (8, 9). Land-use intensity can influence microbial community 

structures in soils. Perennial systems were shown to have distinct communities of soil earthworms, 

nematodes, protists, and bacteria (10–13). Furthermore, perennial plants have been linked to higher 

microbial diversity and biomass in bulk and rhizosphere soil, which may be attributed to increased root 

exudation (14–16). The root-associated microbiome of intermediate wheatgrass is not only distinct 

from surrounding bulk soil (17), but there are also observable differences to other deep-rooted plant 

species. Endophytic microorganisms inhabit the inner tissues of plants and can support the host plant 

during germination (18, 19), nutrient acquisition (20, 21), protect against diseases (22), and can confer 

abiotic stress tolerance (19, 23). The plant microbiome is influenced by multiple drivers, including 

abiotic and biotic factors (24, 25). Furthermore, the host plant genotype, compartment niche, and 

developmental stage are significant determinants of microbial assembly, processes by which species 

from a regional pool colonize and interact to form stable local communities (26–29). Another critical 
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aspect is the evolutionary history of plants, which correlates with the microbial communities 

associated with them (30). Furthermore, domestication and breeding for high yield cultivars shaped 

the microbiota of our modern crops (31). Recently, the loss of microbial diversity and specificity as well 

as potential beneficial associations in modern crop plants have been increasingly recognized, which 

highlights the significance of studying native ecosystems as a source of plant-beneficial endophytes 

(32). Moreover, wild plants are more adept at forming beneficial interactions, while modern crops may 

be impacted in this ability (31).  

We hypothesized that: i) intermediate wheatgrass has a distinct bacterial composition and greater 

microbial diversity across compartments in comparison to annual wheat; ii) in the case of the root 

microbiome, this diversity will be influenced by soil chemical and biological characteristics; and iii) the 

root microbiome of intermediate wheatgrass will be less variable and more connected across time due 

to reduced environmental disturbances. To test these hypotheses, our objectives were to compare the 

bacterial endophyte communities across different plant compartments (roots, stems, leaves) at 

multiple sites (Sweden, Belgium, and France) and timepoints (2021 and 2022), focusing on how plant 

genotype, life cycle, and soil parameters influence microbial diversity and community assembly. 

 

Materials and Methods 

Sample collection and study sites 

Samples of intermediate wheatgrass [Thinopyrum intermedium (Host) Barkworth & D.R. Dewey; 

trademarked Kernza®] and winter wheat (Triticum aestivum L.)  roots, stems, and leaves were collected 

in June 2021 in Sweden (55°40′8″N, 13°7′0″E), Belgium (50°33′36″N, 4°42′0″E), and France 

(45°39′11″N, 5°14′38″E). Analogous sampling was conducted in April 2022, except for root samples in 

Belgium, that were sampled in May 2022. More detailed information on the wheat cultivars and 

sampling sites can be found in Supplementary Data Table S1. 
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In total, 720 destructive samples were collected: 20 biological replicates (5 per 4 subplots) x 3 

compartments (roots, stems, and leaves) x 2 genotypes (intermediate wheatgrass and winter wheat) 

x 3 field sites (Sweden, Belgium, France) x 2 sampling timepoints (June 2021 and April 2022). Roots 

were collected with a split tube sampler (Royal Eijkelkamp, Giesbeek, Netherlands; diameter: 5.3 cm) 

at a depth of 5-15 cm. Stem and leaf samples were collected beforehand above the soil core sample. 

Since perennial wheatgrass can spread through rhizomes, sampling of individual plants was not 

possible and several plants were pooled into one biological replicate.  

All plant samples were put in sterile bags, stored cooled, and sent within 48 hours for further sample 

processing either to the Nicolaus Copernicus University (Torun, Poland) or Graz University of 

Technology (Graz, Austria) (Table S1).  

Surface sterilization, DNA extraction, and 16S rRNA gene fragment sequencing 

Roots (pre-washed and separated from soil), leaves, and stems were weighed and sterilized with 70% 

EtOH for 1 min, followed by washing with sterile H2O for 1 min. Afterwards, the roots and aboveground 

plant samples were sterilized with 7.5% H2O2 for 6 or 4 minutes, respectively, and finally washed 5 

times with sterile H2O. The surface sterilized plant material was stored at -20 °C until further use. 

The plant material (approximately 50 mg of roots, 100 mg of leaves, and 200 mg of stems) was 

disrupted using mortar and pestle and liquid nitrogen. Subsequently, total genomic DNA was extracted 

following the manufacturer’s instructions of the DNeasy PowerSoil Kit (Qiagen, Valencia, CA, USA). The 

samples were stored at -20°C until further use. For amplification of the V4 region of the 16S rRNA gene 

fragment, the universal barcoded primers 515f- 806r (515f: 5′‐GTGYCAGCMGCCGCGGTAA‐3′; 806r: 5′‐

GGACTACNVGGGTWTCTAAT‐3′) were used (33). Peptide nucleic acid clamps (PNA) were included in 

the PCR mix to interfere with the amplification of host plastid and mitochondrial 16S rRNA genes (34). 

PCRs were carried out in 25 µl volumes and two technical replicates using the 2x KAPA Taq Ready Mix 

(Kapa Biosystems, USA), 1.5 µM PNA mix, 0.2 mM of each primer, PCR-grade water, and 1 µl undiluted 

template DNA. The cycling conditions were as follows: 96 °C for 3 min, 30 cycles of 95 °C for 30 s, 78 
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°C for 5 s, 54 °C for 30 s, 72 °C for 20 s, and a final extension at 72 °C for 30 s. Out of the 720 samples, 

16 could not be amplified (Table S1). Technical replicates were pooled and combined (Table S1) in 

equimolar concentrations. The amplicon libraries were purified using the Wizard SV Gel and PCR Clean-

Up System (Promega, Madison, WI, USA) before being sent to the sequencing provider Novogene 

(Cambridge, UK) for library preparation. Sequencing was done on an Illumina NovaSeq 6000 platform 

(2 x 250 bp paired-end reads). 

Characterization of soil chemical and biological parameters 

Soil gravimetric water content was measured after drying sieved soil at 105 °C for 24 hrs. Soil pH was 

determined with a pH Cond 340i glass electrode (WTW Ltd, Germany) using air-dried soil in a 0.01 M 

CaCl2 solution. Total soil organic carbon and total nitrogen were quantified using the Elemental 

Analyser vario EL cube (Elementar Ltd, Germany). Plant available phosphorus (P) and potassium (K) 

were extracted in a Ca-acetate-lactate (CAL) solution according to Schüller (35). Quantification of P 

was based on the colorimetric method of Murphey et al. (36) and measured using a photometer (UV-

1650 PC; Shimadzu Europe GmbH, Duisburg, Germany). Determination of K was done using a flame 

atomic absorption spectroscopy (AA240 FS, Varian GmbH, Darmstadt, Germany). 

Soil microbial carbon and nitrogen were determined with moist soil (adjusted to approx. 50% of 

maximum water holding capacity) according to the chloroform fumigation extraction method (37). 

Extracts were analyzed with a TOC-TN Analyzer (Shimadzu TOC-V + TNN, Kyoto, Japan). Soil microbial 

respiration was determined according to Heinemeyer et al. (38) with moist soil samples. Released CO2 

was assessed automatically by an infrared gas analyzer (ADC Model 225-MK3, Hoddesdon, England). 

Dehydrogenase activity (DHA) was determined based on a method presented by Thalmann (39). Moist 

soil samples were incubated with a triphenyl tetrazolium chloride (TTC) solution dissolved in 0.1 molar 

Tris buffer for 24 h at 27 °C. After 2 h of reaction time with shaking at regular intervals, the colored 

sample was filtrated and the liquid phase was measured at 546 nm against blank values on a 

spectrometer (Shimadzu UV-1650 PC; Shimadzu Europe GmbH, Duisburg, Germany). 
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Sequence data processing 

Raw sequences were demultiplexed using cutadapt, including removal of primer sequences and low-

quality reads (40). Following, the data was quality filtered, denoised, and chimeric sequences were 

removed using the DADA2 algorithm and feature table and representative sequences (amplicon 

sequence variants (ASVs)) were generated (41) within QIIME2 (42). The ASVs were classified using the 

SILVA v132 database and the vsearch algorithm (43, 44). All amplicon libraries were processed 

separately in QIIME2 and all feature and taxonomy tables were combined to a single phyloseq object 

in R for further statistical analyses. 

Statistical analyses 
Bacterial community analysis was conducted using the package Phyloseq (45) and statistical analysis 

was performed with R (version 4.3.1) (46) in R studio (version 2023.06.1) (47). ASVs assigned to 

“eukaryota”, “archaea”, “chloroplast”, and “mitochondria” were removed from the dataset with the 

function subset_taxa. For beta diversity analysis, the dataset was subjected to cumulative sum scaling 

and Bray-Curtis dissimilarity matrices were computed. Significant differences were assessed using the 

function adonis2 (PERMANOVA) from the package VEGAN (48). To evaluate bacterial alpha diversity 

the dataset was normalized by random subsampling to 500 reads per sample (Fig. S1A). A total of 15 

(out of 704) samples were removed due to low read numbers, a trade-off between sequencing depth 

and retaining biological replicates (Table S1). The Kruskal-Wallis test was employed to determine 

significant differences in microbial alpha diversity, based on the Shannon H’ index, species richness, 

and Faith’s phylogenetic diversity index (PD). PD was calculated using the respective function from the 

package biomUtilitis (49). Pairwise comparisons were conducted via Wilcoxon test and P-values were 

corrected with false discovery rate.  

General linear models were generated using the glm function, followed by a stepwise selection with 

the function stepAIC from the package MASS (50) to identify a minimal fitted model to predict Shannon 

diversity and observed ASV richness in the roots. Therefore, the dataset was separated and normalized 

by random subsampling to 4200 reads per sample, whereas three samples were excluded due to a low 
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number of reads (Table S1, Fig. S1B). For each chemical soil parameter used as a predictor variable, an 

optimal transformation was determined using the boxcox function. Distanc-based redundancy analysis 

(db-RDA) was conducted using the functions dbrda and ordiR2step implemented in VEGAN (48). The 

environmental variables were standardized using the function decostand with the “clr” method. For 

each subplot, five plant samples were obtained, but only one soil core, so the alpha diversity values 

and the subsampled ASV counts of the five plants were averaged for the regression analysis and the 

db-RDA, respectively. The sampling site Sweden in the sampling year 2021 had to be excluded from 

the glm and db-RDA analyses because no soil chemical parameters were collected there.  

Core taxa were assessed using the core_members function implemented in the package microbiome 

at various prevalence levels from 0-100% and a detection level greater than 0.001 on the subsampled 

dataset (51). Significant differential abundant genera and phyla were assessed using DESeq2 

incorporated as function DA.ds2 in the package DAtest and low abundant ASVs with less than 10 reads 

were trimmed using the function preDA. Significant differential abundant genera and phyla were 

defined by a Benjamini-Hochberg (BH) adjusted P-value < 0.05 and a log2 fold change > 0.58 or < - 0.58 

corresponding to a fold change of 1.5 (52, 53).  

Networks assessing community interactions were created using the package SpiecEasi (version 1.1.2) 

(54). The networks were computed for each genotype and field site separately, and to overcome the 

inflation of zeros, ASVs were filtered per network by a prevalence of 75%. The adjacency matrices were 

calculated by using Meinshausen-Buhlmann’s neighborhood selection with 50 repetitions, lambda 

minimum ratio of 0.001, and nlambda of 1000.These lambda settings enabled the calculation of 

networks with stabilities close to the target stability threshold of 0.05. The network transformation 

and analysis of network properties were conducted with the package igraph (version 1.3.5) (55). Global 

network properties like positive edge percentage, sparsity, and transitivity were calculated along with 

local network properties for each node, including mean degree, betweenness centrality, closeness 

centrality, eigenvector centrality, and transitivity. Differences between genotype-specific network 

parameters were assessed using the Kruskal-Wallis test. Keystone taxa were identified as nodes with 
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an eigenvector centrality value exceeding the empirical 95% quantile (56). Betweenness centrality is 

defined by the number of shortest paths going through a node and provides insights into the 

importance of a taxa based on their role in connecting different parts of the microbial communities. 

Closeness centrality indicates the proximity of a node to all other nodes, thereby giving insights into 

its potential to influence them efficiently (57, 58). Eigenvector centrality takes the connectivity of the 

associated nodes into account, indicating that a taxon plays a significant role in the overall community 

by being part of an important subnetwork (59, 60). Transitivity, also known as clustering coefficient, 

quantifies the clustering of nodes in a network by measuring the probability that the neighbours of a 

node are connected and may give indications about niche specialization (57).  
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Results 

In the frame of the NAPERDIV project, 720 plant samples were collected from two plant genotypes 

(Thinopyrum intermedium L. and Triticum aestivum L.), three endosphere compartments (roots, stems, 

and leaves), two growth stages (flowering and tillering stage) and three countries (Sweden, Belgium, 

and France). Previous work showed that the three sites represent different climatic as well as soil 

conditions (Table S2) (12). After quality filtering and removal of plant-originating sequences and 

singletons the final dataset was comprised of 44 704 596 reads, which were classified into 51 832 ASVs 

and assigned to 48 bacterial phyla. Reads in individual samples ranged from 164 to 2 264 523 with an 

average number of 6 350.85 ± 148 792.8 reads. The samples were mainly dominated by 

Pseudomonadota (aboveground: 70.9% and roots: 38.5%), followed by Actinomycetota (aboveground: 

14.8% and roots: 21.2%), and Bacteroidota (aboveground: 3.5% and roots: 15.8%) (Fig. 1A, Fig. S2).  

 

Plant genotype effects on the bacterial composition and diversity 

Based on a PERMANOVA analysis, all tested factors, i.e., plant genotype (R2 = 0.5%, P = 0.001), 

compartment (R2 = 17&, P = 0.001), field site (R2 = 7.5%, P = 0.001), and sampling timepoint (R2 = 6.8%, 

P = 0.001), influenced the bacterial community composition. NMDS plots supported these results as 

indicated by a clustering mainly in compartment and field site (Fig. S3A-D, Table S6).  The root 

microbiome was mainly influenced by the field site, while the variation in community composition in 

the aboveground material was mainly explained by the sampling timepoint (Fig. S4A-C, Table S7).  

To further assess the influence of the genotype on the bacterial community structure and how the 

bacterial composition changed over time, the dataset was split based on the two main influencing 

factors “compartment” and “field site”. We found that the bacterial community compositions of stems 

and leaves were mainly influenced by the sampling timepoint, which resulted in a clear grouping in the 

NMDS plots at all three sampling sites (Fig. 1B). The genotype explained no (e.g. stems from Sweden), 

or only little variation in the bacterial community structure (Table 1). The community composition of 
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the roots, on the other hand, showed a clear clustering for the genotype and sampling timepoint for 

all three sites. The effect of “genotype” accounted for 7.3% to 12.8% (P = 0.001) of the variation in the 

root compartment, while the sampling timepoint explained 4.9% to 12.9% (Table 1). When comparing 

the three sampling locations, we observed that the samples from Sweden exhibited the lowest 

“genotype” effect, showing no influence in the aboveground tissues, and a less pronounced effect (R2 

= 8.1%, P = 0.001), compared to sampling timepoint (R2 = 11.7%, P = 0.001), on the root endophytic 

communities. Similar to the bacterial community composition, a significant difference in alpha 

diversity between the annual and perennial genotypes was only observed in the root compartments. 

The diversity and richness in stems (Shannon: P < 0.0005; Faith PD: P < 0.0005; observed: P < 0.0005) 

and leaves (Shannon: P < 0.0005; Faith PD: P < 0.0005; observed: P < 0.0005) were notably lower than 

those in the roots, but with similar levels across both genotypes (Fig. 1C). However, the perennial roots 

exhibited higher diversity (Shannon: P < 0.0005; Faith PD: P < 0.0005) and richness (P < 0.0005) 

compared to their annual counterparts.  

 

Effect of soil parameters on the root-endophytic microbiome 

To determine the influence of genotype and chemical soil properties on differences in bacterial 

diversity observed in the roots, generalized linear models were applied. This was followed by stepwise 

selection from both directions to identify a minimal set of predictor variables included in the best fitted 

models. From the eight variables tested, four significant ones remained in the final models (Table 2, 

Fig. S5). The adjusted McFadden’s R2 was computed for the final models to assess their adequacy, 

resulting in a value of 0.506 for the Shannon diversity and 0.501 for ASV richness. It was shown that 

the ratio of carbon:nitrogen (C:N) was the strongest predictor for Shannon diversity and ASV richness. 

In addition, “respiration” and “water content” exhibited a significant influence on both indices. 

Furthermore, an increase in “microbial C:N” and “dehydrogenase activity” resulted in an increase in 

Shannon diversity and richness, respectively. Interestingly, the factor “plant genotype” was not 
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included in either of the final models. Furthermore, plant available potassium and phosphorus were 

excluded from the most adequate models.  

To assess the influence of plant genotype and environmental variables on the root bacterial 

communities a distance-based redundancy analysis was applied. A stepwise selection from both 

directions was applied and the final model had an adjusted R2 of 41.9% (P = 0.0001). It was shown that 

microbial C:N, dehydrogenase activity, plant genotype, C:N, and respiration could significantly explain 

the variance in the bacterial community composition, while water content, phosphorus and potassium 

were excluded from the best fitted model (Table 2, Fig. S6). 

 

Network analysis of the root microbiome 

Networks were calculated to investigate the taxonomic relationships of bacterial communities for the 

different plant genotypes and field sites. In order to assess the stability of the root microbiomes, the 

sampling timepoints were merged and only ASVs with a prevalence of 75% were kept for network 

analyses. All networks exhibited a similar density (0.0221-0.0255), but the topology differed 

distinctively between the plant genotypes, but also the field sites (Table 3, Fig. 2). The network 

structures resembled the sampling gradient from North to South, with networks from Sweden 

exhibiting the lowest number of nodes and edges, while those from France had the highest values. A 

higher number of edges per node was found in the networks of intermediate wheatgrass in France and 

Sweden, while the networks of annual wheat exhibited a higher percentage of positive edges in France 

and Belgium. All three networks of intermediate wheatgrass depicted significantly higher values for 

the local network parameter closeness centrality and the ones from Sweden and France had a 

significantly higher average number of neighbours and a greater number of keystone taxa. A 

substantial number (18 out of 42) of the keystone taxa in the perennial networks belong to the family 

of Chitinophagales and Rhizobiales, while the keystone taxa in the annual networks were dominated 

(10 out of 30) by Chitinophagales and Burkholderiales. Betweenness centrality was higher in the annual 
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wheat networks from Sweden and France, however this was not statistically significant. The annual 

networks of Sweden and Belgium showed significantly higher eigenvector centralities. Transitivity was 

only significantly higher in the network of annual wheat from France, while no difference was observed 

at the other field sites. 

To further test the hypothesis, that perennial wheatgrass root communities changed less over the two 

sampling timepoints than the annual wheat communities, core microbiome analyses were conducted. 

Thereby we assumed that a higher number of ASVs was shared between the two sampling timepoints. 

The dataset was again split according to field site and genotype. Neither intermediate wheatgrass nor 

annual wheat had a core at a prevalence of 100%, indicating that no ASV was found in every sample of 

either plant genotype. This observation was consistent even when the samples were analysed per field 

site (Table S4). The shared core between the two sampling timepoints was comprised of a higher 

number of ASVs in the intermediate wheatgrass than the core of annual wheat at most prevalence 

levels in Sweden and Belgium. At the field site in France, the annual wheat had slightly higher numbers 

of shared ASVs at prevalence levels of 0.375 to 0.625. Similarly, the percentage of ASVs in the shared 

core compared to the respective unique cores was, at most prevalence levels and field sites, higher in 

the intermediate wheatgrass (mean: 50%) than in annual wheat (mean: 42%). The most pronounced 

decrease in the number of ASVs in the shared core was for all sample types from the prevalence level 

0 to 0.125, suggesting a variable fraction of rare bacteria only present in a few samples. Interestingly, 

while both genotypes from the site Sweden exhibited high numbers of ASVs at low prevalence levels, 

they had the smallest core at the higher prevalence levels.  

To assess which bacterial phyla were most affected between the two sampling timepoints, differential 

abundance analyses were conducted at phyla and genera level. Phyla and genera were considered 

significantly differential abundant if they exhibited an adjusted P-value < 0.05 and a log2 fold change 

> 0.58 or < -0.58. At all three sites, the intermediate wheatgrass root microbiome showed a lower 

number of significantly different abundant phyla, compared to annual wheat (Table S5). The difference 

was most pronounced in Belgium (Perennial: 25.8%; Annual: 39.3%) and the least dominant in Sweden 
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(Perennial: 24.3%; Annual: 28.9%) (Table S5, Fig. 3A). This pattern was further observed in the 

abundance of the changed phyla. The relative abundance of the largely unchanged phyla was 

consistently higher in intermediate wheatgrass (Sweden: 77.1%; Belgium: 92.4%; France: 77.5%) 

compared to the annual counterpart (Sweden: 68.6%; Belgium: 34.2%; France: 34.8%) (Fig. 3A). The 

observed differences in the relative abundance in annual wheat were due to the abundance change in 

the most dominant phyla (e.g. Pseudomonadota and Actinomycetota), which were not significantly 

different in intermediate wheatgrass. On genus level the differences between intermediate 

wheatgrass and annual wheat were less pronounced (Fig. 3B). The number of significantly changed 

genera was lower for intermediate wheatgrass compared to annual wheat at the field site Belgium 

(Perennial: 9%; Annual: 23.3%). For the field sites Sweden (Perennial: 16.6%; Annual: 15.3%) and 

France (Perennial: 19.6%; Annual: 19.9%) the number of significantly differential abundant genera was 

similar. A similar pattern was observed for the abundance of the largely unchanged genera, with major 

differences between the plant genotypes at the field site Belgium (Perennial: 85.6%; Annual: 60.8%), 

but only minor differences at the field sites France (Perennial: 55.5%; Annual: 59.6%) and Sweden 

(Perennial: 52.1%; Annual: 49.5%).  

 

Discussion 

The results obtained in this study provide fundamental insights into the dynamics of bacterial 

communities associated with perennial wheatgrass and its annual counterpart wheat. Higher diversity 

of the bacterial community and differences to annual wheat in terms of composition were mainly 

shown for the belowground compartment of intermediate wheatgrass. Furthermore, the root 

microbiome of intermediate wheatgrass collected from the three different sampling sites showed 

signatures of a more stable and connected microbial network structure.  
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Chemical and biological soil parameters influence the bacterial community structure of 

root endophytes 

Perennial crops are important for different ecosystem services, partially due to their commonly 

extensive root systems (61). Ecosystem services provided by them include positive effects on soil 

health (7, 62, 63). Soil serves as an important reservoir of diverse microbial communities, from which 

plants can specifically select bacteria that can inhabit the plant endosphere (64, 65). We identified 

several soil chemical and biological parameters influencing the root bacterial diversity and community 

composition. Interestingly, the plant genotype partially explained the variance in the community 

composition but was not included in the best fitted models for alpha diversity. This means that the 

plant genotype does not provide additional information to the models explaining diversity beyond 

what is already accounted for by the soil chemical (e.g. soil water content) and biological (e.g. soil 

microbial C:N, dehydrogenase activity) parameters. However, other variables, such as the C:N or the 

water content were included in the models and showed negative correlations with diversity and 

richness. It was previously shown that the C:N ratio and soil water content are, among others, 

influencing not only the soil microorganisms but also the structure of plant endophytic microbiome 

(66). Furthermore, Bak et al. (67) observed that intermediate wheatgrass exhibits, unlike other deep-

rooting plant species, high abundances of the N-cycling genes nirK and nifH in the root environments 

which indicates that N fixation contributes to plant N supply. The fixed N can subsequently be utilized 

by root-associated bacteria through N-rich plant exudates (67). Therefore, it was speculated that the 

high relative abundance of N fixers has the potential to increase microbial biomass (microbial C) by the 

decrease in the C:N ratio of plant exudates (67). In line with this, we were able to show that an increase 

in the soil microbial C:N ratio was correlated with an increase in diversity in roots.  

In particular, soil biological parameters related to microorganisms, such as respiration, microbial C:N 

ratio, and dehydrogenase activity (DHA) explained part of the alpha diversity. Interestingly, respiration 

showed a negative effect on both alpha diversity indices that were assessed. It was previously 

discussed that biodiversity and community functioning are closely interconnected (68). It was shown 
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in controlled experiments that once diversity reaches a certain saturation level of community 

functioning, further increases in diversity do not have a significant impact on community functioning 

(69). This is especially relevant for common functions like respiration. Last, DHA can serve as an 

indicator of microbial activity and is frequently employed for microbial redox systems (70). Most 

studies focused on the assessment of DHA in association with soil contamination and it was shown 

that there is a limited correlation with soil microbial diversity (71, 72). In our study, an increase in DHA 

and the microbial C:N ratio in the soil was correlated with higher alpha diversity in the roots. In 

previous studies comparing the rhizosphere or soil of annual wheat and perennial wheatgrass, the 

latter was shown to accumulate higher microbial biomass and support higher bacterial activity (73, 

16). Hence, we suggest that the higher bacterial diversity and richness observed in intermediate 

wheatgrass roots are influenced by factors beyond plant genotype, such as soil quality. Intermediate 

wheatgrass promotes a more active soil microbial community with higher microbial biomass (73), 

therefore we speculate that the perennial lifecycle of the dense rooted intermediate wheatgrass 

and/or differences in the management create an environment that facilitates higher bacterial diversity. 

This, in turn, could result in a larger reservoir of microorganisms from which the plant can select, 

creating a beneficial feedback loop.  

 

The plant genotype mainly influenced the root microbiome composition and diversity 

and to a lesser extent the aboveground compartments 

We found that primarily the plant compartment, the sampling location and the time influenced the 

bacterial community composition more than the genotype of the cereal. A similar pattern was 

previously observed for sugarcane (74). While we observed that the root microbiome was mainly 

influenced by the sampling site, the aboveground structures were mostly affected by the sampling 

timepoint. Furthermore, the host genotype effect was more prominent in the belowground 

compartment. Similar results were observed for lucerne (75) and maize (76) where belowground 

tissues, but not the leaves, of different plant genotypes were shown to harbor distinct bacterial 
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communities. To disentangle the host genotype effect, the dataset was separated based on the two 

primary influencing factors, plant compartment, and sampling site. A clear trend was observed for the 

bacterial composition of root and aboveground compartments at all three sampling sites. While the 

root microbiomes clustered by genotype and sampling timepoint, the aboveground microbiome was 

mainly influenced by the sampling timepoint. In addition, we observed a higher bacterial diversity and 

richness in the roots of intermediate wheatgrass compared to annual wheat, whereas no significant 

differences were noted in the stems and leaves between the two plant species. Given the management 

practices used for intermediate wheatgrass cultivation, it is important to note that wheatgrass is 

typically cut a few centimeters above the ground during harvesting (77, 78). Therefore, the 

aboveground material has to regrow each year at the onset of the vegetation period, resulting in a 

comparable growth process to annual plants. However, the extensive root system of intermediate 

wheatgrass is less affected by the harvesting process and can continue to develop over the years. In 

contrast, in annual wheat, the root system (and aboveground material) must develop from a single 

seed and completely re-establish itself every growing season. While the intermediate wheatgrass root 

microbiome can continuously be shaped by the host, plants in annual management are more prone to 

environmental disturbances due to soil operations, including priority effects. Therefore, we suggest 

that the root systems of intermediate wheatgrass are the key compartment that differentiates 

perennial plants from annual ones, while the aboveground structures share characteristics of annual 

plants.  

It was previously shown by Bertola et al. (16) that one-year old perennial wheat had a comparable 

rhizosphere microbial structure to annual wheat. However, upon analyzing four-year old perennial 

wheat stands, the authors found that they resembled the 11-year old plants of intermediate 

wheatgrass and were distinct from the one-year old wheat (perennial and annual) stands. This pattern 

highlights the conserved ecological niche of perennial roots, enabling the development of a distinct 

root microbiome. The authors further hypothesize that the root microbiome development becomes 

saturated, probably due to a rather stable surrounding (16). We compared bacterial structures of 
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intermediate wheatgrass and annual wheat over two timepoints and found more connected networks 

in intermediate wheatgrass with lower values for betweenness. Higher connectivity, characterized by 

higher mean degree and closeness centrality values, has been linked with higher system stability due 

to redundancy. However, it has also been suggested that a high level of connectivity may render 

systems more susceptible to cascade effects (79). Nodes with high betweenness centrality are often 

termed as “gatekeepers” and networks with low betweenness centrality values may indicate higher 

stability (79–81). Intermediate wheatgrass networks showed more competition, indicated by a low 

ratio of positive to negative edges, which is generally associated with ecological stability (82, 83). 

Moreover, we observed a higher number of core ASVs and less significant changes in the relative 

abundance on the phylum level in intermediate wheatgrass. These patterns were detected at all three 

field sites. This was expected, as annual wheat cultivation is subjected to different environmental 

disturbances, such as soil tillage. Previous work showed that soil bacterial networks, as well as cross-

domain networks, including fungi and protists, follow a gradient of land-use intensity. The networks of 

the permanent grasslands exhibited higher levels of connectivity and complexity than those under 

continuous cropping and temporary grasslands, resembling intermediate wheatgrass cultivation, fell 

within a gradient between the two (10).. It is important to note that comparisons between endophytic 

communities in intermediate wheatgrass and annual wheat must go beyond discussions of differences 

between plant genotypes. The management varies between the two plant types (e.g. tillage) and it is 

hardly possible to distinguish between these two factors. Targeted sampling strategies, e.g. by 

comparing several perennial and annual plant types or investigation of land-use gradients, will be 

necessary in the future to disentangle the differences between effects from plant genotypes and the 

cropping system. Yet, the management is an integral part of the cultivation of perennial grain crops 

and should be considered beside the factor plant genotype.  

In conclusion, we observed consistent findings across the three sampling sites showing compartment-

specific bacterialcommunities resembling the host plant lifestyle (perennial vs. annual). Importantly, 

the root-endophytic microbiome of intermediate wheatgrass showed higher diversity and more 

D
ow

nloaded from
 https://academ

ic.oup.com
/ism

ecom
m

un/advance-article/doi/10.1093/ism
eco/ycae165/7931663 by ISAR

A-Lyon user on 06 January 2025



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

 

20 
 

connected communities. At the same study sites, intermediate wheatgrass cultivation was found to 

improve the diversity, abundance, and biomass of earthworms and to favor a nematode community 

structure that is characteristic for an undisturbed system with a more diverse food web (12, 84). Similar 

patterns across macro- and microorganism scales emphasize the potential of intermediate wheatgrass 

cultivation for fostering sustainability in agriculture by increasing biodiversity.  
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Figure Legends 
 

 

 

Figure 1: (A) Bacterial taxonomic composition of root, stem, and leaf endophytes from intermediate wheatgrass and annual 

wheat at phylum level. Samples from three different field sites and two timepoints (n=114-120 per plant and compartment) 

were merged. The category “Other” was merged from ASVs with a relative abundance below 0.01. (B) Bacterial community 

composition of intermediate wheatgrass and annual wheat visualized as nonmetric multidimensional scaling (NMDS) plots 

divided by the main influencing factors field site and plant compartment. The plant genotype is a major source of bacterial 

community variation in the roots, but to a lesser extent in the aboveground materials (detailed statistics in Table 1). (C) 

Bacterial alpha diversity in different plant genotypes and compartments depicted as Shannon H’, species richness, and 

Faith’s phylogenetic diversity. Three sampling sites and two sampling timepoints were merged (n= 114-120). The Kruskal-
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Wallis test, followed by pairwise comparisons with Wilcoxon testing and “fdr” adjustments, was used to assess significant 

differences, indicated by asterisks (** P<0.01 and *** P<0.001). 

 

 

 

Figure 2: Co-occurrence networks showing the structure of the root microbiome from different plant genotypes and field 

sites inferred by SPIEC-EASI. The two sampling timepoints were merged and only ASVs with a prevalence higher than 0.75 

were included (n=34-40). Node color and size correspond to the taxonomy on phylum level and clr-transformed abundance, 

respectively. Edge colors represent positive (green) and negative (red) associations between ASVs. Keynote taxa are 

represented as triangles.  
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Figure 3: (A) Differentially abundant phyla between the two sampling timepoints (left: 2021, right: 2022). Phyla that are 

significantly different abundant (BH adjusted P < 0.05) and a log2 fold change >0.58 or < 0.58 are represented by colored 

points, while phyla below the threshold are grey and labelled as “Not_Significant”. The group “Others” represent phyla with 

a relative abundance below “1%”. The point size corresponds to the mean relative abundance. (B) Differential abundant 

genera between the two sampling timepoints (left: 2021, right: 2022). Genera that are significantly different abundant (BH 

adjusted P < 0.05) and a log2 fold change >0.58 or < 0.58 are represented by orange points, while genera below the 

threshold are grey. The point size corresponds to the mean relative abundance.  

Table Legends 
 

Table 1: Effects of plant genotype and sampling time on bacterial community composition of different compartments and 

sites assessed with PERMANOVA. 

  Plant Genotype Sampling Time Plant Genotype x Sampling Time 

  R2 (%) Pr (>F) R2 (%) Pr (>F) R2 (%) Pr (>F) 

France – Roots 12.8 0.001 12.9 0.001 4.3 0.001 

Belgium – Roots 7.3 0.001 4.9 0.001 8.1 0.001 

Sweden – Roots 8.1 0.001 11.7 0.001 3.1 0.001 
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France – Stems 4.3 0.001 21.5 0.001 7.2 0.001 

Belgium – Stems 1.8 0.051 31.1 0.001 1.6 0.067 

Sweden – Stems 1.3 0.245 13.2 0.001 1.6 0.102 

France – Leaves 2.9 0.004 19.4 0.001 2.8 0.004 

Belgium – Leaves 2.5 0.004 22.1 0.001 2.3 0.009 

Sweden – Leaves 1.7 0.052 27.2 0.001 1.8 0.045 
 

 

Table 2: Effects of environmental variables on root Shannon H’ index and observed richness explained by generalized linear 

models and on the root bacterial community composition based on db-RDA Anova.  

Parameter Shannon Diversity ASV Richness Beta diversity 

  F value Pr (>F) F value Pr (>F) 
F 
value 

Pr 
(>F) 

R2 
adj. 

C:N 16.7162 0.0003 15.8215 0.0004 3.35 0.001 4.83 

Respiration 8.9843 0.0054 6.4275 0.0169 2.38 0.007 2.79 

Water Content 5.1286 0.0309 6.7556 0.0145 - - - 

Microbial C:N 8.0094 0.0082 - - 6.27 0.001 13.43 

Dehydrogenase Activity - - 9.3124 0.0048 5.74 0.001 10.87 

Phosphorus - - 0.6588 0.4236 - - - 

Plant Genotype - - - - 4.35 0.001 7.21 

Potassium - - - - - -   
 

 

Table 2: Topological parameters of root microbiome networks of different plant genotypes and field sites. Two sampling 

timepoints were merged and only ASVs with a prevalence greater than 0.75 were included in the network construction. 

 

Prevalence filter: 0.75% 

 Field 
Site 

Sweden Belgium France 

Genotyp
e 

Perenn
ial 

Annua
l 

p-
value 

Perennia
l 

Annual 
p-
value 

Perenni
al 

Annua
l 

p-
value 

Stability 0.0499 
0.049
7 

  0.0495 0.0495   0.05 
0.049
5   

Nodes 194 97   218 222   395 248   

Edges 457 120   524 548   1781 679   
Positive 
Edges 

294 75   322 360   1080 428 
  

Positive 
Edges in 
% 

64.332
604 

62.5   
61.45038
168 

65.693
431 

  
60.6400
898 

63.03
387 

  
Negative 
Edges 

163 45   202 188   701 251 
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Edges/N
odes 

2.3556
701 

1.237
113 

  
2.403669
725 

2.4684
685 

  
4.50886
076 

2.737
903   

Pos/Neg 
Edges 

1.8036
81 

1.666
667 

  
1.594059
406 

1.9148
936 

  
1.54065
621 

1.705
179   

Sparsity 0.0243 
0.025
5   

0.0221 0.0222   0.0228 
0.022
1   

max 
degree 

16 9 
  

13 16 
  

18 15 
  

mean 
degree 

4.73 2.47 
2.56E-
13 4.81 

4.94 
0.6267 

9.02 5.48 
< 2.2e-
16 

Between
ness 
centrality 

0.028 0.044 0.998
2 0.027 

0.025 
0.9531 0.0132 

0.020
4 

0.1347 
Closenes
s 
centrality 

11.17 5.51 
< 
2.2e-
16 13.94 

11.68 1.18E-
09 28.93 

15.13 
 < 
2.2e-
16 

Eigenvec
tor 
centrality 

0.052 0.07 0.000
6 0.036 

0.122 
 < 
2.2e-
16 0.094 

0.119 
0.1296 

Number 
of 
keystone 
taxa 

10 5 

  11 

12 

  20 

13 

  
Transitivi
ty 

0.094 0.12 
0.121 0.086 

0.08 
0.3365 

0.0742 
0.080
2 

0.0352
1 
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